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ABSTRACT 

An evaluation was made of five algorithms for ideal inviscid flow: Lax’s, Rusanov’s, 
LandshoE’s, the Lax-Wendroff, and Richtmyer’s. These algorithms were compared on 
the basis of ease of coding, spatial and temporal resolution, and execution time. The 
comparisons were drawn through studies of a onsdimensional reflected shock wave, 
a flat-faced step in supersonic flow, and passage of a normal shock wave over a stationary 
cone. Lax’s method was found to be the easiest to implement and of good resolution; 
Rusanov’s to be the most versatile and of better resolution; and a modified version of 
the Lax-Wendroff to yield the best resolution but to be the most difficult and time- 
consuming to use. 

I. INTROOUCTI~N 

Now that high-speed computers have become generally available and numerical 
techniques more sophisticated, many fluid dynamic problems are solved by direct 
numerical integration of the governing differential equations. Unfortunately, 
although there seem to be almost as many numerical methods as there are investi- 
gators, no comparison of the methods and their computational times is available. 

This study was performed to compare the characteristics and usefulness of 
several differencing methods: Lax’s, Landshoff’s, Rusanov’s, Lax and Wendroff’s, 
and Richtmyer’s. All of these methods are explicit, and no computations were 
made to determine the relative advantages of the explicit, implicit, or alternating- 
direction techniques. In the following sections a brief discussion of the methods 
is given, their solutions to several problems are compared, and finally some 
improvements are suggested. 
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Basic Equations 

The governing equations of mass, momentum, and energy for inviscid, plane, 
two-dimensional flows are as follows: 

g+ 
apu apv 
K+F=o, (1) 

apt4 a~22 ap24v ap 
x+,x+w=--9 ax 

apuv ap79 ap 
g+ar+ay=--' 

ay 

(2) 

(3) 

g + & {pu[e + P/p + 1/2(u2 + v”)l> + &Me + P/P + W(u2 + v31) = 0. (4) 

There is no conceptual difficulty in treating cylindrical or spherical coordinate 
systems [I], [2], but a study of plane, rectangular coordinate system is sufficient 
for the purposes of comparison. 

Equations (l)-(4) are written in “divergence free” or “control volume” form, 
since the advantages of this approach have already been well documented [3], [4]. 
By defining the vectors 

CT = if, pu, PO, a, (5) 

pu2 + (y - 1) (E - $), puv, q pu(u2 + v”) + yuE, (6) 

jj~ = pv, puv, - q pv2 + (y - 1) (E - $), 9 pv(z.2 + ~3 + yvE, (7) 

where 

E = p[e + W(u2 + v2>], 

Eqs. (l)-(4) may be expressed as 

All of the methods used to solve these equations may be shown to be consistent 
and to be stable according to either the Courant-Friederich-Lewey (CFL) 
criterion or some modification thereof. 
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II. DESCRIPTION OF METHODS 

Lax’s Method 

Perhaps the simplest and most easily programmed method is that due to Lax [5]. 
In this method, the differencing is carried out in a straightforward manner- 
normally utilizing centered differences in space and forward differences in time. 
The system of equations may be shown to be conditionally stable according to 

At=min &,- ( 
AY 

vfc ) 

if the forward time difference for a specified component, w, is replaced by 

aw w(t + 4 x, JJ) - qt, x, Y) 
at= At , 

where 

(9) 

6 = l/qw(t, x + Ax, y) + w(t, x, y + Ay) + Nt, x - Ax, Y) + WY x7 y - AY)) 

(11) 

represents a spatial average of w. Lax’s method, in effect, introduces an artificial 
viscosity (in the sense of second derivative terms) whose coefficients are 

Ax2 and Ay2 
4At 4dt’ 

Thus, to yield the maximum resolution of the flow field, At must be as large as 
possible within the limits of stability and Ax must be as small as possible within 
the storage capabilities of the computer. 

Landshoff’s Method 

Following Richtmyer and von Neumann’s suggestion [6], Landshoff [7] modified 
the pressure by including an additional term, q, called the artificial pressure and 
given for one dimension by 

q = -~rpc(a~/ax) Ax, (12) 

where 01 is an adjustable constant. Normally a cut-off procedure [S] is used to 
prevent the smearing of rarefaction waves, but when the nature of the wave and 
its direction are unknown, no cut-off is possible. This method was tested only in 
its one-dimensional form. 
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Rusanov’s Method 

One of the most useful differencing formulations is due to Rusanov [9]. This 
improvement of Lax’s method maintains the minimum artificial viscosity at each 
nodal point and also weights the importance of the neighboring mesh points. 
The generic equation 

is represented in Lax’s method by 

Rusanov’s method consists in weighting the points so that (1) the method can be 
reduced to Lax’s method; (2) if all neighboring points are of equal value, the aver- 
age reduces to that value; and (3) the closest points are weighted most heavily. 
These requirements can be most easily met by defining (for any component) 

AY’ 5 = ; [w(t, x + Ax, Y) + w(t, x - Ax, y)l 42 

AX2 
+ ; Mt, x, Y + AY) + w(t, x, Y - A~11 dz, (13) 

where A2 = Ax2 + Ay2. By adding and subtracting w(t, X, y) we may write 

Ax2 a2w Ay2 
w  = w(t, x, y) + - - - 

( 1 
+ Ay2 azw Ax2 

2 ax2 A2 2-7. ( 1 (14) 

Now to further decrease the damping, Rusanov multiplied Eq. (14) by a variable 
constant and the Courant number 6 so that 

Ax2 a 
?L:(t,X,Y)=w(t,X,Y)+-2-aX(3L~)+~~(B~), (15) 

where 

V+c Ay2 
ci = aw (v+ C)max42’ 

(16) 
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and where w  is a pure number of variable magnitude. If Ax = fly, w  = 1, and 
v+c=(~+4Il,, then Eq. (15) reduces to Lax’s equation. For other condi- 
tions, however, the presence of the term (Y + c)/( V + c)~~ tends to reduce the 
damping for points for which the sound pulse travels slowly and to maximize 
the damping only for those points for which V + c - (V + c)~~ . The result 
for most flow problems is a reduced damping at the majority of nodal points in 
the field and a larger damping only where it is really needed (e.g., in the vicinity 
of shocks). 

The necessary stability criterion for Eq. (15) is 

(1W 

This criterion cannot be rigorously proven, but experience has demonstrated its 
validity. 

Lax- Wendroff Method 

The full development of the two-dimensional Lax-Wendroff difference formula- 
tion has been given by Burstein [lo] and Emery [l 11, and only a brief description 
will be included here. The formulation consists in approximating the time derivative 
so that second-order terms are retained: 

or 

where [A] and [B] are matrices given by 

The inclusion of the G,,, term produces a conditionally stable formulation 
capable of great spatial resolution-producing shocks which are about one-half 
the width predicted by other methods-but requires considerably more computa- 
tional time. In addition, the method frequently becomes unstable. To avoid insta- 
bilities-caused by the disappearance of the C,, term at unusual points in the flow 
(e.g., sonic points and stagnation points in essentially one-dimensional portions 
of the flow [IO], [I I])-it is necessary to incorporate an additional artificial 
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viscosity term. Following Lax and Wendroff’s original paper [12], one writes for 
one dimension 

6.t = -11: + 1/2[Q(K b”) - (6” - zN.1: 

where (? and 6 are values of 5 at x and x + Ax; and Q is the matrix 

(20) 

Q = d,I + d,A + dzAZ + **. dn-IA”-l, (21) 

where n is the number of independent eigenvalues of [A]. In addition, Q must 
satisfy the following rule: Q(a, b) is a matrix which should commute with A(T) 
and whose eigenvalues should be equal to the absolute values of the differences 
of the corresponding eigenvalues of A(u) and A(b) multiplied by the dimensionless 
factors B, through B, of order unity. For a one-dimensional Eulerian system, 

d, = 2 (-2~ + b + e),l 

(22) 

(23) 

(24) 

where a = 1 AU 1, b = 1 d(u + c)l, e = 1 d(u - c)l, zz = *{u(x) + u(x + Ax)}. 
The stability requirement now includes K, and is given by 

which, for K, = 1, reduces to 

At < 0.78(Ax/l u + c I) 

This requirement is just slightly more stringent than the usual CFL requirement. 

Modljication of Lax- Wendroff Methodfor Two-Dimensional Problems 

It is not possible to extend the Lax-Wendroff method to two dimensions by 
using a generalization of the above modification while satisfying the conditions 

* The constant K, need not be the same for do, dl , and dz . 
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of commutation of Q with A and B and of invariance of the artificial viscosity 
term with respect to rotation of the coordinate axis. It is possible, however, simply 
to add in the y direction an artificial term, K, , with a separate coefficient, which 
is completely analogous to the term in the x direction2 Numerical tests have 
indicated that this term provides sufficient damping of oscillations of short wave 
length to prevent instabilities. For such a formulation, the stability criterion is 

1 (1 + K)‘j2 1 
U<- 

2++K 2 <zi 
(for K, = K,), 

and reduces to Lax and WendrofYs value of l/z/S for K = 0. This value appears 
to have been substantiated by Burstein, who found that u must be less than 0.355 
for long-time stability. 

Successful calculations have been carried out, however, with values of Kz = 8 
and CT = 0.7 for one-dimensional flows and of K = 4 and u = 0.7 for two- 
dimensional flows. This Courant number is far in excess of the 0.39 predicted by 
theory and the 0.355 shown by Burstein, a fact which the author cannot explain. 
The best that can be done at the present time is to present a rationale for the use of 
higher values of u. 

First, let us assume that one can derive the stability analysis for an Eulerian 
system of coordinates from that for a Lagrangian system. In Lagrangian coordi- 
nates the amplification matrix is 

G = I + iA4 sin 01 + i(h2A2 + hQ)(cos (Y - 1) 

where a: = kdx, and k is any real integer. Since 

(27) 

’ (28) 

the eigenvalues of G are simply 

PC = 1 + iX,, sin OL + 4(X2& + A&(cos 01 - 1). 

Stability is ensured if 

@c42 + &, < 1 

and, since ~1~ = SC, 

PO = +B I 44 - 4b)l. 

(29) 

(30) 

(31) 

* This extension was derived independently and nearly simultaneously by Burstein 1101 and the 
author [ill. 
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At this point Lax and Wendroff replaced the absolute quantity by PA = c. Since 
1 c(u) - c(b)1 < c, we retain the difference term and write: 

+A2 + h&B / C(U) - C(b)1 < 1. (32) 

Solving this equation and replacing the speed of sound term, c, in PA by u + c to 
accomplish the change from the Lagrangian to the Eulerian system, we obtain 

u < (u + c)max -- USC l B2V 1’2 1 + 16 1 “4” 1 --, 

where 

I/ = Ku + c>a - (u + c)?J I 
(u + cl . 

(34) 

For the numerical tests reported below, the appropriate values of u + c across a 
Mach-3 shock showed a value of u < 0.5, while the value derived from the original 
analysis was u < 0.2. Successful calculations were in fact made with a value of 
CT = 0.7, and since stability analyses are not particularly tight, such a value is not 
unreasonable. 

Now in two dimensions this procedure cannot be used, since the matrices 
/I aflaw 11 and 11 ag/aw Ij do not possess the same eigen values. One may, however, 
use the requirement 

(CL 4”) < 1, (35) 

where q is an arbitrary unit vector. Following Burstein [lo], the result shown by 
Eq. (26) is obtained. G does not act, however, upon the arbitrary unit vector q, 
but rather on the field vector 5 whose components are interrelated. If Eq. (35) is 
replaced by 

(GzZ, zZ)/(S, 5) < 1, (354 

which implies that for equal damping in the x and y directions 

Wb) 

(and a similar equation for B), then this inequality can be investigated for some 
special values of 5, albeit because of its complexity not for general values. For 
conditions near the stagnation point and the sonic line (where the instabilities 
tend to arise) one may find the following approximate results for y = 1.4 

(1) u = v = 0, u < 2.5146 
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(2) u = v = c, a < 2.2/d6 c > co 
d 21x4 c < co 
< 1.7/d/6 c = co 

(3) 24 = c v = 0, (T < 2.5/2/a c > co 
d 2ld~ c = co 
< Z/d6 c < co. 

With these results it is plausible to find calculations successfully completed when 
CJ - 0.7. Burstein’s inability to utilize a value of u greater than 0.35, however, 
remains inexplicable, though it is possible that difference methods which are too 
sophisticated are very susceptible to small changes in the order of the computations. 

Richtmyer’s Method 

Richtmyer’s method [13] is a two-step approximation to the Lax-Wendroff 
formulation. The appropriate difference forms in one-dimension are 

Lit aj(t x) 
zqt + dt, x) = ‘2 [zqt, x + Llx) + tqt, x - Ax)] - --y --&- ) (364 

@(t + 4 x) zqt+2At,x)=qt,x)--t ax ’ Wb) 

The necessary stability requirement is 

Numerical tests with this method showed that it was susceptible to the same 
instabilities as the original Lax-Wendroff method and that the allowable computa- 
tional time increments (At) were not much larger. 

III. PROBLEMS AND RESULTS 

One-Dimensional Shock Wave 

Probably the simplest problem which can be numerically solved and which yields 
worthwhile information is the passage of a one-dimensional shock wave through a 
perfect gas and its reflection from a solid wall. For this problem, initial conditions 
were set at unity, and then at the left edge of the field the conditions appropriate 
to a Mach-3 shock were maintained. 

Figure 1 indicates the results obtained using Lax’s method. It is apparent that 
cr < 0.7 for acceptable overshoot of the pressure, although stable computations 



EVALUATION OF SEVERAL DIFFERENCING METHODS 315 

were carried out with (T = 0.95. It should be noted that the width of the shock 
and the overshoot are inversely related and depend directly on u. [Note added in 
proof. A stability analysis for two-dimensional algorithms with dx = dy reveals 
that dt < [dx/(V + c)](l/42) or u < 0.707 in agreement with the results shown 
on figure 1. P. D. Lax [16] has indicated that the correct stability criteria is 
given by Eq. (16a) where dxdy/(dx2 + dy2)li2 is the radius of the characteristic 
cone which is tangent to the chords connecting the nodal points used in the compu- 
tation of 21, at a given point.] 

34 38 42 34 38 42 46 50 46 50 
xLGRID- POINT NUMBER) xLGRID- POINT NUMBER) 

(11 (11 

‘26 30 34 38 42 46 
x(GRID-POINT NUMBERI 

FIG. 1. Pressure profiles for one-dimensional passage as given by Lax’s method. (a) o = 0.95, 
0.90; (b) D = 0.85, 0.80; (c) (I = 0.70. 
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Figure 2 shows the results obtained with the modified Lax-Wendroff method. 
Note that (I) the shock width is significantly less than that achieved in Lax’s 
method, and (2) the width is quite constant with varying K and CT. 

26 30 34 

L 

i 30 
x (GRID-POINT NUMBER) 

FIG. 2. Pressure profiles for one-dimensional passage as given by Lax-Wendroff method 
with nonlinear artificial viscosity term: (r = 0.7, t = 10 to 16 Ax/c1 . 

The results of Rusanov’s method are given in Fig. 3. It is quite apparent that 
w must be greater than Cr. For w - I/C?, the shock is broad but with no pressure 
overshoot. This feature is of importance in transient external aerodynamics (see 

x (GRID-POINT NUMBER I 
(al 

FIG. 3. Pressure profiles for one-dimensional passage as given by Rusanov’s method. 
(a) ST = 0.7, w = 1.03, 1.23, 1.43; (b) 6 = 0.7, w = 0.73, 0.83, 0.93. 



EVALUATION OF SEVERAL DIFFERENCING METHODS 317 

Section IV below). This method appears to be better than Lax’s, but poorer than 
the Lax-Wendroff, the ease of programming and the high computational speed, 
however, cannot be overlooked. 

Figure 4 is given for completeness. Landshoff’s method appears to yield 
satisfactory results upon examination of the pressure, but the density trace reveals 
incipient problems. This figure emphasizes the importance of examining all of the 
fluid mechanical variables when evaluating a method. None of the other methods 
showed such behavior. 
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(bl (bl 

FIG. 4. Profiles for one-dimensional passage as given by Landshoff’s method. (a) Pressure 
profile: 01 = 2.0, 0 = 0.3, 0.4; (b) density profile: CY = 3.5. 
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FIG. 5. Profiles for reflected shock as given by Lax’s method: M. = 3.0, (I = 0.7. (a) Pressure 
profile; (b) density profile. 
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Figures 5-8 are pressure-density traces for the reflected shock. Several important 
features are noticeable: (I) shock widths have increased very significantly; (2) 
shock widths for the Lax-Wendroff method are no longer independent of K or o; 
and (3) with Rusanov’s method it is now quite difficult to produce a very significant 
pressure overshoot. From Fig. 8 we can conclude that Landshoff’s artificial 
viscosity method suffers from such curious problems that it should not be used in 
place of any of the other methods. 

x (GRID-POINT NUMBER1 

FIG. 6. Pressure profiles for reflected shock as given by Lax-Wendroff method with nonlinear 
artificial viscosity term: 0 = 0.7, t = 75 Ax/c,. 
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Pressure profiles for reflected shock as given by Rusanov’s method: (I = 0.7. 
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FIG. 9. Isobars (P/PI) for two-dimensional step as given by Lax’s method: (I = 0.7, n = 850, 
nAt = 147.5 Ax/c, (x = 10, + = 11, A = 12). 
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FIG. 10. Isobars (P/PI) for two-dimensional step as given by Rusanov’s method: o = 0.5, 
0 = 0.4, n = looo, nAf = 122.3 Ax/c, (x = 10, x = 11, A = 12). 
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FIG. 11. Isobars (P/PJ for two-dimensional step as given by Lax-Wendroff method: 
o = 0.7, n = 1397, ndt = 238.8 Ax/c1 (+ = 10, d = 11) (K was changed from 2.0 to 4.0 at 
nAt = 150.9 Ax/c,). 



FIG. 12. Mach-number profiles for two-dimensional step as given by Lax-We&off method: 
(I = 0.7, n = 1420, ndt = 231.8 Ax/c, (K was changed from 2.0 to 4.0 at nAf = 150.9 Ax/c,). 
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IDEAL SHOCK POSITION--- 

----IDEAL SHOCK POSITION 

cd., 

IDEAL SHOCK POSI 

----IDEAL SHOCK POSITION 

(b) 

FIG. 13. Passage of a Mach-11 shock wave over an Il.5degree half-angle cone at zero 
angle of attack. (a) Blunted tip; (b) sharp tip. 

IV. LIMITATIONS AND IMPROVEMENTS 

Transient Flow behind Shock Waves 

It is apparent in the figures for the moving shock that large oscillations in density, 
pressure, and energy may be present in all but the most highly damped calculations. 
In cases where a shock passes over a body and forms a steady bow shock (e.g., 
passage over a cone or wedge), these oscillations may frequently be of the same 
magnitude as the changes the flow experiences in crossing the bow shock- 
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particularly if it is attached. They may therefore radically alter the flow variables 
on the vehicle’s surface and produce anomalous transient shock shapes and pressure 
profiles. Figure 13 displays these effects and shows that the flow becomes smooth 
only after the shock is far downstream from the tip. Unless these conditions are 
recognized when they occur, very faulty interpretations of the results will be made. 

When the flow properties behind a moving shock or on a body after a shock 
has passed over it are desired, extreme care must be taken not only in interpreting 
the results but also in making the calculations. Only if the oscillations are small 
compared to the expected changes can the numerical methods be used with 
moderate amounts of damping. An exception is provided by the Lax-Wendroff 
method, since its spatial resolution-even with moderate damping-is good, and 
the oscillations behind shocks are small. When using the other methods in cases 
where interference is expected, the damping (i.e., artificial viscosity) must be increa- 
sed, although this increase may widen and smear the shocks and pressure waves 
so badly that the results may not be acceptable-particularly if the local transient 
pressure history on the body is desired to determine the dynamic movements of 
the body. 

Corners and Singular Points 

Probably the most difficult configurations to handle are those which involve 
corners and singular points. Through extensive numerical tests it has been found 
best to handle corner points by neglecting them and rounding the sharp edge 
slightly. Attempts to consider sharp-edged corners have shown that the flow field 
in the neighborhood of the corner is radically affected and frequently generates 
numerical instabilities. 

Singular points are far more difficult. Consider the nodal point at the tip of a 
cone. It is apparent that, in an all-numerical approach to the flow problem, this 
nodal point must either be assigned to the conical surface or to the free stream. 
In the former case, the cone effectively has a cusp shape and in the latter is effectively 
blunted. The latter effect is permissible only if the cone’s half-angle is large; 
otherwise the flow turning angle will be too large and the flow will tend to separate 
on passing to the conical surface. Figure 13(b) is a graphic example of this problem 
coupled with the transient shock problem. The fluctuation of pressure behind the 
shock interacting with the flow separation at the blunt nose produces apparent 
vortices which shed very nearly periodically from the nose. The singular point 
of the conical tip in spherical coordinates is a more difficult problem, for which 
one should see Reference [14]. 

Overlay 

To reduce computational time it is frequently of advantage to alter the mesh 
spacing in the flow field. This operation can be most conveniently performed by 
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changing the spacing by multiples. It is necessary, however, to remember that the 
artificial viscosity is dependent upon the mesh size and must be changed to maintain 
uniform shock thickness. 

Almost all difference equations yield shock thicknesses which are proportional 
to the square root of the artificial viscosity and an overshoot which is inversely 
proportional to the artificial viscosity. To produce minimum shock thicknesses 
with an acceptable degree of overshoot, an optimum value of the artificial damping 
coefficient must be used. For Lax’s method, the damping coefficient is 

Ax2/4At 

and the optimum thickness-six mesh points-and acceptable overshoot are 
obtained when 

At = 0.7(At),,, 

and 

Atmax = min 
1 

For the purposes of discussion we may simply require that the time increment 
be that associated with the space increment through the CFL stability requirement. 

Now consider a flow region which has been divided into two subregions, one 
with Ax, , the other with Ax, , where 

Ax, > Ax, . 

For an optimum shock thickness in both regions, the damping coefficients in each 
region must be 

+A$ d,-y. 
1 2 

For ease of computation, however, we use the same time increment in both regions; 
and for stability this increment must be the smaller of the values At, and At,. Thus 
in region 2 (Ax = Ax,), the damping will be 

Ax,~ 
4 -x 

_ Ax,~ At, _ Aq2 (u + c)z Ax2 

1 At, At, dt,(u+c)l 

If (u + c),,, is approximately the same in both regions, 

Ax,~ Ax, Ax, Ax2 d,+=--=- - 
( 1 

1 At2 AXI 4x1 At optimum 
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Thus, in the use of the “overlay” technique, the coefficient in G should be 

W&W 
to yield the best shock shapes. Figure 14 a shows the result of not correcting the 
damping coefficient, while Fig. 14(b) shows the result when 
applied. 

40 “40 50 , 

x (GRID - POINT NUMBERl 

(a, 

the correction is 

x(GRID-POINT NUMBER) 

tb) 

FIG. 14. Pressure profiles for one-dimensional passage as given by Lax’s method with overlay 
for a grid change at x = 30. (a) Constant Damping Coefficient; (b) Different (Optimum) Damping 
Coefficients. 

When using Rusanov’s method, there is no necessity to incorporate any change 
in the damping coefficient. In this case the coefficient is 

d 
Ay2 Ax2 

-%- At 
- = w(v+ c) Ax AY 

(Ax2 + Ay2)li2 
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and we see that it is independent of the time increment used. Hence the same value 
of w  may be used in each region. Furthermore, 

and w  = 1 represents the geometric center of the line extending from 0 to l/G. 
Thus if o N 1 it will continue to represent the center, regardless of the value of 
6 CC At/Ax. Hence the shock shape should not be significantly different for the 
different sub-regions. Figures 15 a and 15 b show the results for Rusanov’s method. 

x(GRID-POINT NUMBER) 

(a) 

x(GRID-POINT NUMBER1 

Cb) 

FIG. 15. Pressure profiles for one-dimensional passage as given by Rusanov’s method with 
overlay for a grid change at x = 30. (a) 5 = 0.7, w = 1.0 (for entire field); (b) 6 = 0.7, w = 1.4 
(for entire field). 
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One must remember that, although the shock width will remain constant at 
about six mesh points, the physical thickness doubles if Ax, = 2dx, . This increase 
can only be avoided by reducing the damping factor. Since the overshoot, however, 
is inversely proportional to the damping, the shock may either exhibit unacceptable 
overshoot or actually become unstable. 

Since it is difficult to maintain an equal shock thickness in the two regions, it is 
best to change Ax across the entire y dimension of the flow field rather than only 
across a portion of it. Experiments performed with changes so that 

Ax = Llx, for y > y*, dx = Ax, for y < y*, 

have shown that the computed flow field frequently becomes distorted enough to 
cause difficulty in interpreting the results. 

Computational Times 

Table I presents the computational times for each of the ditferencing techniques 
studied. When an equal number of nodal points are used, the Lax-Wendroff 
method is capable of spatial resolution approximately three times greater than that 

TABLE I 

TIMFS REQUIRED TO COMPUTE CONLNTIONS AT AN INTERIOR POINT ON THE CDC 3600” 

Method Tie (msec) Ratio 

Lax 1.7 1.0 

Landshoff 2.0 1.2 

Rusanov 2.3 1.35 

Richtmyer 1.7 1.0 

Lax-Wendroff (modified) 6.5 3.8 

a An interior point is any point wholly within the flow-i.e., any point not a boundary point. 

of Lax’s method. Equal spatial resolution can be obtained by Lax’s method by 
increasing the number of nodal points, at the cost of requiring total computational 
times nearly equal to those of the Lax-Wendroff method. One of the major features 
of the latter method, however, is the accuracy of its temporal resolution, the error 
being of the order of dt3, while that of the other methods is of the order of dt2. 
Thus, even though Lax’s method can give equal spatial resolution, the Lax- 
Wendroff method is to be preferred for transient problems and problems in which 
overshoot must be at a minimum. 
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Recommendations 

Of the three major methods-Lax’s, Rusanov’s, and the Lax-Wendroff- 
Rusanov’s is the preferable. Lax’s method is the simplest to program but offers the 
least flexibility. The Lax-Wendroff yields the best spatial and temporal resolution, 
but the difficulties in programming this method (particularly at corners and singular 
points) render it useful only to those interested in numerical methods for their own 
sake. Rusanov’s method is easily programmed, offers an adjustable parameter, 
and yields very good resolution. 

One point should be noted. Numerical tests have shown that if the number of 
nodal points is increased to require equal computational times, all methods are 
equivalent in accuracy. If temporal resolution is desired, however, then only the 
Lax-Wendroff method should be used. Figure 16 shows the development of the 
shock standoff distance for the step problem. A simple solution based upon 
Miles [15] is also given. It is apparent that the Lax-Wendroff method is much 
preferable to the other two methods. 

FIG. 16. Shock standoff distance on axis of symmetry. 

q LAX-WENDROFF 8m=IR 
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